3.5.33 \(\int \frac {\sqrt {1-x}}{\sqrt {-x-x^2}} \, dx\) [433]

Optimal. Leaf size=12 \[ -2 E\left (\left .\sin ^{-1}\left (\sqrt {-x}\right )\right |-1\right ) \]

[Out]

-2*EllipticE((-x)^(1/2),I)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {728, 111} \begin {gather*} -2 E\left (\left .\text {ArcSin}\left (\sqrt {-x}\right )\right |-1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - x]/Sqrt[-x - x^2],x]

[Out]

-2*EllipticE[ArcSin[Sqrt[-x]], -1]

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 728

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[(d + e*x)^m/(Sqrt[b*x]*Sqrt[1
+ (c/b)*x]), x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4] && LtQ[
c, 0] && RationalQ[b]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-x}}{\sqrt {-x-x^2}} \, dx &=\int \frac {\sqrt {1-x}}{\sqrt {-x} \sqrt {1+x}} \, dx\\ &=-2 E\left (\left .\sin ^{-1}\left (\sqrt {-x}\right )\right |-1\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.01, size = 66, normalized size = 5.50 \begin {gather*} -\frac {2 x \sqrt {1-x^2} \left (-3 \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};x^2\right )+x \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};x^2\right )\right )}{3 \sqrt {1-x} \sqrt {-x (1+x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - x]/Sqrt[-x - x^2],x]

[Out]

(-2*x*Sqrt[1 - x^2]*(-3*Hypergeometric2F1[1/4, 1/2, 5/4, x^2] + x*Hypergeometric2F1[1/2, 3/4, 7/4, x^2]))/(3*S
qrt[1 - x]*Sqrt[-(x*(1 + x))])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(49\) vs. \(2(10)=20\).
time = 0.44, size = 50, normalized size = 4.17

method result size
default \(\frac {2 \left (1-x \right ) \sqrt {-x \left (x +1\right )}\, \sqrt {x +1}\, \sqrt {2}\, \sqrt {-x}\, \EllipticE \left (\sqrt {x +1}, \frac {\sqrt {2}}{2}\right )}{x \left (x^{2}-1\right )}\) \(50\)
elliptic \(\frac {\sqrt {x \left (x^{2}-1\right )}\, \left (\frac {\sqrt {x +1}\, \sqrt {2-2 x}\, \sqrt {-x}\, \EllipticF \left (\sqrt {x +1}, \frac {\sqrt {2}}{2}\right )}{\sqrt {x^{3}-x}}-\frac {\sqrt {x +1}\, \sqrt {2-2 x}\, \sqrt {-x}\, \left (-2 \EllipticE \left (\sqrt {x +1}, \frac {\sqrt {2}}{2}\right )+\EllipticF \left (\sqrt {x +1}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {x^{3}-x}}\right )}{\sqrt {1-x}\, \sqrt {-x \left (x +1\right )}}\) \(118\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x)^(1/2)/(-x^2-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(1-x)*(-x*(x+1))^(1/2)*(x+1)^(1/2)*2^(1/2)*(-x)^(1/2)*EllipticE((x+1)^(1/2),1/2*2^(1/2))/x/(x^2-1)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)/(-x^2-x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-x + 1)/sqrt(-x^2 - x), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.25, size = 16, normalized size = 1.33 \begin {gather*} 2 \, {\rm weierstrassPInverse}\left (4, 0, x\right ) + 2 \, {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, x\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)/(-x^2-x)^(1/2),x, algorithm="fricas")

[Out]

2*weierstrassPInverse(4, 0, x) + 2*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, x))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {1 - x}}{\sqrt {- x \left (x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)**(1/2)/(-x**2-x)**(1/2),x)

[Out]

Integral(sqrt(1 - x)/sqrt(-x*(x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)/(-x^2-x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-x + 1)/sqrt(-x^2 - x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.08 \begin {gather*} \int \frac {\sqrt {1-x}}{\sqrt {-x^2-x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - x)^(1/2)/(- x - x^2)^(1/2),x)

[Out]

int((1 - x)^(1/2)/(- x - x^2)^(1/2), x)

________________________________________________________________________________________